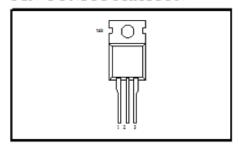


1. Configuración de un circuito que utiliza un Tiristor

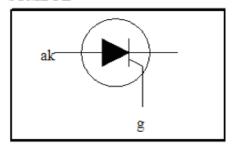
Documento: Infografía 5 páginas Luego añadimos una resistencia de 2K en puerta, a fin de limitar la corriente de disparo. **Con todo esto, ya tenemos un circuito básico de disparo del Tiristor.** Lo primero que vamos a notar en esta configuración es que sólo permitirá el paso del semiciclo positivo de la señal alterna, no funcionará para el semiciclo negativo pues el Tiristor sólo funciona en una única dirección.

GENERAL DESCRIPTION

Glass passivated thyristors in a plastic envelope, intended for use in applications requiring high bidirectional blocking voltage capability and high thermal cycling performance. Typical applications include motor control, industrial and domestic lighting, heating and static switching.


QUICK REFERENCE DATA

SYMBOL	PARAMETER	MAX.	MAX.	MAX.	UNIT
v	BT151- Repetitive peak off-state	500R 500	650R 650	800R 800	v
$V_{\rm ESM}$, $I_{\rm T(AV)}$, $I_{\rm T(RMS)}$. Itsm	voltages Average on-state current RMS on-state current Non-repetitive peak on-state current	7.5 12 100	7.5 12 100	7.5 12 100	A A A


PINNING - TO220AB

PIN	DESCRIPTION
1	cathode
2	anode
3	gate
tab	anode

PIN CONFIGURATION

SYMBOL

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DRM, VRRN}	Repetitive peak off-state voltages		-	-500R 650R -800R 800	v
$\begin{array}{c} I_{T(AV)} \\ I_{T(RMS)} \\ I_{TSM} \end{array}$	Average on-state current RMS on-state current Non-repetitive peak on-state current	half sine wave; T mb ≤ 109 °C all conduction angles half sine wave; T j = 25 °C prior to surge	-	7.5 12	A A
		t = 10 ms t = 8.3 ms	-	100 110	A A
I2tI₂t for fusin	e	t = 10 ms	_	50	A2S
$^{dI}_{\tau/dt}$	Repetitive rate of rise of on-state current after triggering	$I_{M} = 20 \text{ A}; I_0 = 50 \text{ mA};$ $G/dt = 50 \text{ mA}/\mu s$	-	50	A/μ S
I_{GM}	Peak gate current		-	2	A
V_{GM}	Peak gate voltage		-	5	V
V_{RGM}	Peak reverse gate voltage		-	5	V
P on	Peak gate power		-	5	W
P G(AV)	Average gate power	over any 20 ms period	-	0.5	W
T _{sig} T _j	Storage temperature Operating junction temperature		-40 -	150 125	°C

También de la hoja de datos puede observarse que la corriente mínima de disparo (corriente en puerta) es de 2 miliamperios y la máxima de 15 miliamperios. Tomando esto como datos, procedemos a calcular el voltaje Ve mínimo a utilizar para el disparo del Tiristor.

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
R _{th j-mb}	Thermal resistance		-	-	1.3	K/W
	junction to mounting base Thermal resistance junction to ambient	in free air	•	60	•	K/W

STATIC CHARACTERISTICS

I = 25 °C upless otherwise stated								
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT		
I _{GT} I _L I _H V _T V _{GT}	Gate trigger current Latching current Holding current On-state voltage Gate trigger voltage	$\begin{array}{l} V_{D} = 12 \text{ V; } I_{T} = 0.1 \text{ A} \\ V_{D} = 12 \text{ V; } I_{OT} = 0.1 \text{ A} \\ V_{D} = 12 \text{ V; } I_{OT} = 0.1 \text{ A} \\ I_{D} = 12 \text{ V; } I_{OT} = 0.1 \text{ A} \\ V_{D} = 12 \text{ V; } I_{T} = 0.1 \text{ A} \\ V_{D} = V_{DRM(max)}; I_{T} = 0.1 \text{ A; } T_{i} = 125 \text{ °C} \end{array}$	- - - - 0.25	7 1.4 0.6 0.4	15 40 20 1.75 1.5	mA mA V V		
L _D ,	Off-state leakage current	VD - W - W - T - 125 °C	-	0.1	0.5	mA		

DYNAMIC CHARACTERISTICS

i = 25 °C unless otherwise stated								
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT		
$\begin{array}{c} {}^{dV}_{_{D}/dt} \\ \\ t_{gt} \\ \\ t_{q} \end{array}$	Critical rate of rise of off-state voltage Gate controlled turn-on time Circuit commutated turn-off time	$V_{\rm DM} = 67\% \ V_{\rm DRM(max)}; T_i = 125 \ ^{\circ}{\rm C};$ exponential waveform; Gate open circuit $ {\rm ^R}_{\rm GK} = 100 \ \Omega $ $ {\rm ^I}_{\rm TM} = 40 \ {\rm A}; \ V_{\rm D} = V_{\rm DRM(max)}; \ I_{\rm G} = 0.1 \ {\rm A};$ $ {\rm ^V}_{\rm D} = 67\% \ V_{\rm DRM(max)}; \ T_j = 125 \ ^{\circ}{\rm C};$ $ {\rm ^I}_{\rm TM} = 20 \ {\rm A}; \ V_{\rm R} = 25 \ {\rm V}; \ {\rm dI}_{\rm TM}/{\rm dt} = 30 \ {\rm A}/{\rm \mu s};$ $ {\rm ^U}_{\rm D} = 67\% \ V_{\rm MR} = 25 \ {\rm V}; \ {\rm dI}_{\rm TM}/{\rm dt} = 30 \ {\rm A}/{\rm \mu s};$	50 200 -	130 1000 2 70		V/μs V/μs μs μs		

2. Obtención de elementos involucrados en el circuito

Para calcular el voltaje de disparo tenemos: Para la corriente mínima de 2 miliamperios I,:

$$Ved = I_L \cdot R_D + VEB = 2 \text{ mA} \cdot 2000 \text{ ohmios} + 0 = 4V$$

 $Ved = I_l \cdot R_D + VEB = 15 \text{ mA} \cdot 2000 \text{ ohmios} + 0 = 30V$

Entonces para este circuito **se debe contar con un voltaje de disparo entre 4V y 30V.** También es importante verificar que la corriente absorbida por la ampolleta es menor a la máxima ofrecida por el Tiristor, para lo cual se necesitará el voltaje de bloqueo $V_{\rm T}$.

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$R_{\text{th j-mb}}$	Thermal resistance		-	-	1.3	K/W
R _{th j-s}	junction to mounting base Thermal resistance junction to ambient	in free air	•	60	•	K/W

STATIC CHARACTERISTICS

T 25 °C vale	I = 25 °C unless otherwise stated								
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT			
I _{oT} I _t I _v V _T V _{OT}	Gate trigger current Latching current Holding current On-state voltage Gate trigger voltage Off-state leakage current	$V_{\text{D}} = 12 \text{ V}; I_{\text{T}} = 0.1 \text{ A}$ $V_{\text{D}} = 12 \text{ V}; I_{\text{OT}} = 0.1 \text{ A}$ $V_{\text{D}} = 12 \text{ V}; I_{\text{OT}} = 0.1 \text{ A}$ $V_{\text{D}} = 12 \text{ V}; I_{\text{OT}} = 0.1 \text{ A}$ $V_{\text{D}} = 12 \text{ V}; I_{\text{T}} = 0.1 \text{ A}$ $V_{\text{D}} = 12 \text{ V}; I_{\text{T}} = 0.1 \text{ A}; T_{\text{J}} = 125 \text{ °C}$ $V_{\text{D}} = V_{\text{DRM(max)}}; I_{\text{T}} = 0.1 \text{ A}; T_{\text{J}} = 125 \text{ °C}$	- - - - 0.25	2 10 7 1.4 0.6 0.4 0.1	15 40 20 1.75 1.5 - 0.5	mA mA V V V mA			

DYNAMIC CHARACTERISTICS

T _i = 25 °C unle	i = 25 °C unless otherwise stated								
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT			
$\begin{array}{c} dV_{_{D}}/dt \\ \\ t_{gt} \\ \\ t_{q} \end{array}$	Critical rate of rise of off-state voltage Gate controlled turn-on time Circuit commutated turn-off time	$V_{DM} = 67\% \ V_{DRM(max)}; \ T_j = 125 \ ^{\circ}C;$ exponential Waveform; Gate open circuit $ \frac{R}{GK} = 100 \ \Omega $ $I_{TM} = 40 \ A; \ V_D = V_{DRM(max)}; \ I_0 = 0.1 \ A;$ $U_{D} = 67\% \ V_{DRM(max)}; \ T_j = 125 \ ^{\circ}C;$ $I_{TM} = 20 \ A; \ V_R = 25 \ V; \ dI_{TM}/dt = 30 \ A/\mu s;$ $dV_{D}/dt = 50 \ V_{MR} \ R_{DRM} = 100 \ \Omega $	50 200 -	130 1000 2 70		V/4 s V/4 s 4 s			

Puede verse en la gráfica que $V_T = 1.4V$, que es el voltaje mínimo que precisa este dispositivo para funcionar correctamente. Se tiene:

$$V_{alim} = V_T + I_L \cdot R_{ampolleta'}$$
 despejando I_L :

$$I_L = (V_{alim} - V_T) / R_{ampolleta}$$

$$I_{1} = (120V - 1.4V) / 100 \text{ ohmios}$$

$$I_1 = 1.19 A$$

Con lo que se comprueba que **esta carga puede ser manejada por el Tiristor, debido a que es menor que 7.5 amperios** que maneja este dispositivo.