

Ejercicios sobre la transformada de Laplace

Para el desarrollo de los siguientes ejercicios, se debe tener en consideración la siguiente tabla de transformadas.

Tabla de transformadas de Laplace			
δ (t)	1	sen ωt	$\frac{\omega}{s^2 + \omega^2}$
1	<u>1</u> s	cos ωt	$\frac{s}{s^2 + \omega^2}$
t	$\frac{1}{s^2}$	e ^{-at} sen ωt	$\frac{\omega}{(s+a)^2+\omega^2}$
t ⁿ	$\frac{n!}{s^{n+1}}$	e ^{-at} cosωt	$\frac{s+a}{(s+a)^2+\omega^2}$
e ^{-at}	<u>1</u> s+a	t ⁿ e ^{-at}	$\frac{n!}{(s+a)^{n+1}}$

Ejercicios resueltos

Ejercicio 1

Hallar la transformada Laplace de las siguientes funciones:

a $fa(t) = (3e^{-2t} + e^{-t}) u(t)$

b $fb(t)=(t^3+t^2+t+1)u(t)$

c $fc(t)=[1-e^{-2t}+4e^{-t}\cos(3t)]u(t)$

d $fd(t) = (8e^{-1000t} - 5e^{-2000t}) u(t)$

Resultados:

Al observar cada caso en la tabla de transformadas de Laplace se tiene:

a
$$fa(S) = \frac{3}{s+2} + \frac{1}{s+1}$$

b
$$fb(S) = \frac{6}{s^4} + \frac{2}{s^3} + \frac{1}{s^2} + \frac{1}{s}$$

c
$$fc(S) = \frac{1}{s} + \frac{2}{s+2} + \frac{4(s+1)}{(s+1)^2+9}$$

d
$$fd(S) = \frac{8}{s+1000} + \frac{5}{s+2000}$$

Ejercicio 2

Aplicando la linealidad calcule la transformada de Laplace en el ejercicio que se presenta:

$$L\{4e^{5t}+6t^3-3sen(4t)+2cos(2t)\}$$

Resultados:

Por la propiedad de linealidad, se tiene:

$$L\{4e^{5t} + 6t^3 - 3sen(4t) + 2cos(2t)\} = L\{4^{5t}\} + L\{6t^3\} - L\{3sen(4t)\} + L\{2cos(2t)\}$$

$$= 4L\{e^{5t}\} + 6L\{t^3\} - 3L\{sen(4t)\} + 2L\{cos(2t)\}$$

$$= 4\left\{\frac{1}{s-5}\right\} + 6\left\{\frac{3!}{s^4}\right\} - 3\left\{\frac{4}{s^2 + 16}\right\} + 2\left\{\frac{s}{s^2 + 4}\right\}$$

$$= \frac{4}{s-5} + \frac{36}{s^4} + \frac{12}{s^2 + 16} + \frac{2s}{s^2 + 4}$$